sexta-feira, 15 de fevereiro de 2019

A história do átomo - Modelos atômicos


Modelos Atômicos
A constituição da matéria é motivo de muita curiosidade entre os povos antigos. Filósofos buscam há tempos a constituição dos materiais. Resultado dessa curiosidade implicou na descoberta do fogo, o que o permitiu cozinhar os alimentos, e consequentemente implicou em grande desenvolvimento para a sociedade. A partir dessa descoberta pôde-se verificar, ainda, que o minério de cobre (conhecido na época com pedras azuis), quando submetido ao aquecimento, produzia cobre metálico, ou aquecido na presença de estanho, formava o bronze.
A passagem do homem pelas “idades” da pedra, do bronze e do ferro, foi, portanto, de muito aprendizado para o homem, conseguindo produzir materiais que lhe fosse útil.
Por volta de 400 a.C., surgiram os primeiros conceitos teóricos da Química.
Os filósofos gregos Demócrito e Leucipo afirmavam que a matéria não era contínua, e sim constituída por minúsculas partículas indivisíveis, às quais deram o nome de átomos. Platão e Aristóteles, filósofos muito influentes na época, recusaram tal proposta e defendiam a ideia de matéria contínua.
Esse conceito de Aristóteles permaneceu até a Renascença, quando por volta de 1650 d.C. o conceito de átomo foi novamente proposto por Pierre Cassendi, filósofo francês.
O conceito de "Teoria atômica" veio a surgir após a primeira ideia científica de átomo, proposta por John Dalton após observações experimentais sobre gases e reações químicas.
Os modelos atômicos são, portanto, teorias fundamentadas na experimentação. Tratam-se, portanto, de explicações para mostrar o porquê de um determinado fenômeno. Diversos cientistas desenvolveram suas teorias até que se chegou ao modelo atual.

1. Modelo Atômico de Dalton



Em 1808, o professor inglês John Dalton propôs uma explicação da natureza da matéria. A proposta foi baseada em fatos experimentais. Os principais postulados da teoria de Dalton são:
1. “Toda matéria é composta por minúsculas partículas chamadas átomos”.
2. “Os átomos de um determinado elemento são idênticos em massa e apresentam as mesmas propriedades químicas”.
3. “Átomos de diferentes elementos apresentam massa e propriedades diferentes”.
4. “Átomos são permanentes e indivisíveis, não podendo ser criados e nem destruídos”.
5. “As reações químicas correspondem a uma reorganização de átomos”.
6. “Os compostos são formados pela combinação de átomos de elementos diferentes em proporções fixas”.
A conservação da massa durante uma reação química (Lei de Lavoisier) e a lei da composição definida (Lei de Proust) passou a ser explicada a partir desse momento, por meio das ideias lançadas por Dalton.

2. Modelo Atômico de Thomson




Pesquisando sobre raios catódicos e baseando-se em alguns experimentos, J.J. Thomson propôs um novo modelo atômico. Thomson demonstrou que esses raios podiam ser interpretados como sendo um feixe de partículas carregadas de energia elétrica negativa. A essas partículas denominou-se elétrons. Por meio de campos magnético e elétrico pôde-se determinar a relação carga/massa do elétron. 
Consequentemente, concluiu-se que os elétrons (raios catódicos) deveriam ser constituintes de todo tipo de matéria pois observou que a relação carga/massa do elétron era a mesma para qualquer gás empregado. O gás era usado no interior de tubos de vidro rarefeitos denominadas Ampola de Crookes, nos quais se realizavam descargas elétricas sob diferentes campos elétricos e magnéticos.
Esse foi o primeiro modelo a divisibilidade do átomo, ficando o modelo conhecido como “pudim de passas". Segundo Thomson, o átomo seria um aglomerado composto de uma parte de partículas positivas pesadas (prótons) e de partículas negativas (elétrons), mais leves.

3. Modelo Atômico de Rutherford

Em 1911, Ernest Rutherford, estudando a trajetória de partículas a (partículas positivas) emitidas pelo elemento radioativo polônio, bombardeou uma fina lâmina de ouro.  Ele observou que:
- a maioria das partículas a atravessavam a lâmina de ouro sem sofrer desvio em sua trajetória (logo, há uma grande região de vazio, que passou a se chamar eletrosfera);
- algumas partículas sofriam desvio em sua trajetória: haveria uma repulsão das cargas positivas (partículas a) com uma região pequena também positiva (núcleo).
- um número muito pequeno de partículas batiam na lâmina e voltavam (portanto, a região central é pequena e densa, sendo composta portanto, por prótons).

Diante das observações, Rutherford concluiu que a lâmina de ouro seria constituída por átomos formados com um núcleo muito pequeno carregado positivamente (no centro do átomo) e muito denso, rodeado por uma região comparativamente grande onde estariam os elétrons.
Nesse contexto, surge ainda a ideia de que os elétrons estariam em movimentos circulares ao redor do núcleo, uma vez que se estivesse parados, acabariam por se chocar com o núcleo, positivo.
O pesquisador acreditava que o átomo seria de 10000 a 100000 vezes maior que seu núcleo.


4. Modelo Atômico Clássico

As partículas presentes no núcleo, chamadas prótons, apresentam carga positiva. A partícula conhecida como nêutron foi isolada em 1932 por Chadwick, embora sua existência já fosse prevista por Rutherford.
Dessa forma, o modelo atômico clássico constitui-se de um núcleo, no qual se encontram os prótons e nêutrons, e de uma eletrosfera, na qual estão os elétrons girando ao redor do núcleo em órbitas.

Considerando-se a massa do próton como padrão, observou-se que sua massa era aproximadamente igual à massa do nêutron e 1836 vezes maior que o elétron. Logo:


A essas três partículas básicas, prótons, nêutrons e elétrons, é comum denominar partículas elementares ou fundamentais.

Algumas características físicas das partículas atômicas fundamentais:


Modelo Atômico Rutherford-Bohr

O modelo proposto por Rutherford foi aperfeiçoado por Bohr. Baseando-se nos estudos feitos em relação aoespectro do átomo de hidrogênio e na teoria proposta por Planck em 1900 (Teoria Quântica), segundo a qual a energia não é emitida em forma contínua, mas em ”pacotes”, denominados quanta de energia. Foram propostos os seguintes postulados:
1. Na eletrosfera, os elétrons descrevem sempre órbitas circulares ao redor do núcleo, chamadas de camadas ou níveis de energia.
2. Cada camada ocupada por um elétron possui um valor determinado de energia (estado estacionário).
3. Os elétrons só podem ocupar os níveis que tenham uma determinada quantidade de energia, não sendo possível ocupar estados intermediários.
4. Ao saltar de um nível para outro mais externo, os elétrons absorvem uma quantidade definida de energia (quantum de energia).

5. Ao retornar ao nível mais interno, o elétron emite um quantum de energia (igual ao absorvido em intensidade), na forma de luz de cor definida ou outra radiação eletromagnética (fóton).


6. Cada órbita é denominada de estado estacionário e pode ser designada por letras K, L, M, N, O, P, Q. As camadas podem apresentar:

K = 2 elétrons
L = 8 elétrons
M = 18 elétrons
N = 32 elétrons
O = 32 elétrons
P = 18 elétrons
Q = 2 elétrons
7. Cada nível de energia é caracterizado por um número quântico (n), que pode assumir valores inteiros: 1, 2, 3, etc.




quinta-feira, 14 de fevereiro de 2019

Química orgânica - O surgimento da vida


O surgimento da vida
Inicialmente, os planetas, inclusive a Terra, apresentavam uma atmosfera primária, formadas por átomos de hélio e moléculas de gás hidrogênio. Devido aos movimentos violentos dos ventos solares, essa atmosfera foi dispersada. Assim, a Terra perdeu a sua primeira atmosfera, mas com os gases liberados  a partir do interior do planeta, formou – se , há apenas um bilhão e meio de anos, uma nova atmosfera formada por vapor de água, metano , amônia e gás hidrogênio.
O sol fornecia luz e calor, a chuva caía abundantemente, acompanhada de raios, e os materiais radioativos emitiam radiações, liberando, assim, mais energia para a atmosfera. Nesse ambiente caótico, com pouco ou nenhum oxigênio, ocorreram reações orgânicas que permitiram o aparecimento das primeiras moléculas orgânicas. O termo aqui orgânico está relacionado com as substâncias relacionadas com os organismos vivos (termo considerado até o início do século XIX).
Na década de 1950, Stanley Lloyd Miller, na Universidade de Chigaco (EUA), realizou um experimento simulando como seriam as condições da atmosfera terrestre há 1,5 bilhão e meio de anos atrás. Ele submeteu a mistura de gases atmosféricos (CH4, NH3, H2) e vapor de água a descargas elétricas. Ao fim do experimento ele verificou a formação de aminoácidos, como as glicina e a alanina.
Os aminoácidos originaram as proteínas, os formaldeídos os açucares que por sua vez originaram as purinas e pirimidinas e deram origem às moléculas de DNA, que contém as informações genéticas de todos os  seres vivos da Terra inclusive o homem.
Os primórdios da química orgânica
Originalmente proposta em 1777 pelo químico sueco Torbern Olof Bergman, a química orgânica foi primeiramente definida como um ramo químico que estudava os compostos extraídos dos organismos vivos, contrastando com a química inorgânica, que tratava dos compostos existentes no então chamado "reino mineral". Em 1807, foi formulada a teoria da força vital por Jöns Jacob Berzelius. Ela baseava-se na ideia de que os compostos orgânicos precisavam de uma força maior — a vida — para serem sintetizados, tratando como impossível a síntese artificial desses compostos.
No entanto, em 1828, Friedrich Wöhler, discípulo de Berzelius, a partir do aquecimento de cianato de amônio, produziu a ureia, composto existente na urina animal. Isto é, Wöhler demonstrou ser possível a síntese de um composto orgânico, a ureia, a partir de um composto inorgânico, o cianato de amônio
           
 Tal processo ficou conhecido como síntese de Wöhler e, com essa descoberta, a teoria da força vital perdeu força. Devido à inadequação da definição de Bergman para a química orgânica, o químico alemão Friedrich August Kekulé propôs, em 1858, a definição aceita atualmente:
"Química orgânica é o ramo da química que estuda os compostos do carbono."